TTiP Documentation
Release 0.0.0

Andrew Lister

Aug 12, 2020

Contents:

1 Installation
1.1 Installing Firedrake - Docker (recommended)
1.2 Installing Firedrake - Manual
1.3 Installing TTiP
2 Using TTiP
2.1 Troubleshooting
3 Configuration File
4 Functions
41 Condition e e
42 Constant e e
43 File e e
44 Gaussian e e e e e e
5 Outputs
6 Paraview Guide
6.1 Getting Started Lo
6.2 MoreAdvanced
7 TTiP - Contributor Documentation
7.1 Code Structure
7.2 ProblemClass
73 ConfigParsing
74 FunctionParsing
7.5 Logging. e
7.6 Testing e e e
7.7 Documentation
7.8 Some key links for contributors:
8 Indices and tables
Python Module Index
Index

A~ bW W

W W

11

...................... 12
...................... 12
...................... 13
...................... 13

15

17

...................... 17
...................... 18

TTiP Documentation, Release 0.0.0

TTiP - Thermal Transfer in Plasma is a tool to solve heat transfer problems specifically aimed at the plasma physics
domain.

This tool uses Firedrake as the backend solver. The install for this can take some time, alternatively a docker image
can be used as described on the Installing page.

Contents: 1

https://firedrakeproject.org/

TTiP Documentation, Release 0.0.0

2 Contents:

CHAPTER 1

Installation

TTiP requires Python3 and Firedrake in order to run. The easiest and fastest way to access Firedrake is by using the
docker install. If docker is not an option then Firedrake can be installed without it but this can take several hours.

1.1 Installing Firedrake - Docker (recommended)

The easiest and fastest way to access firedrake is by using docker. Docker is an open source software platform to
create, deploy and manage virtualized application containers. This effectively works like a virtual machine.

The first step is to ensure docker is installe dby following the instructions on their website here.

Once docker is available, the next step is getting the firedrake container, which can easily be done using the pull
command available here.

Check this has been downloaded properly using:

’docker container list

There is now an image of the container for firedrake on the machine. The final step in setting this up is to run the
image as a container:

’docker run -1 -d ——-name ttip firedrakeproject/firedrake

Here the -1 and —d options stop the container from exiting immediately.

You should now have a running container on your system which you can log into using:

’docker exec —-it ttip /bin/bash

This docker container will persist as long as it is not deleted. If the container not available (eg. after a restart) try using
the folowing to restart where you left off:

’docker start ttip

https://docs.docker.com/get-docker/
https://hub.docker.com/r/firedrakeproject/firedrake/

TTiP Documentation, Release 0.0.0

1.2 Installing Firedrake - Manual

Warning: This method will take a long time to install

TTiP uses Firedrake to solve the underlying equations. To install this, please see the install page in their documentation
here.

Firedrake in turn uses the widely used PETSc which will be installed with Firedrake but can take some time.

It is recommended to use the default install for this, which will create a directory called “firedrake” where all the
necessary packages can be found. In particular this contains a virtualenv which will be required to run TTiP.

To activate the virtualenv run:

’ . firedrake/bin/activate

This will mean python can access the firedrake modules.

1.3 Installing TTiP

First ensure you have access to the source code:

git clone https://github.com/AndrewLister-STFC/TTiP.git
cd TTiP

The next step is to ensure it will be installed with access to firedrake. To do this, activate the firedrake virtual environ-
ment:

’ . firdrake/bin/activate

Once inside the firedrake virtualenv, install any additional packages that are required with (in the root of this reposi-
tory):

’ pip install

To check it works, try running:

’ ttip ——help

4 Chapter 1. Installation

https://firedrakeproject.org/index.html
https://firedrakeproject.org/download.html

CHAPTER 2

Using TTiP

TTiP is controlled entirely by the problem definition config file and so running the software is as easy as:

’ttip my_problem.ini

provided “my_problem.ini” is a correctly defined problem as per Configuration File.

2.1 Troubleshooting

If the above does not work there are several things to check:

* The firedrake environment is active (usually this is shown in the terminal). If it is not, run:

’. <firedrake_dir>/bin/activate

where <firedrake_dir> is the location of the firedrake installation.

* The “ttip” command has been installed correctly:

’ls <firedrake_dir>/bin/ttip ‘

If not try reinstalling as per instructions in Installation.

TTiP Documentation, Release 0.0.0

6 Chapter 2. Using TTiP

CHAPTER 3

Configuration File

The config file acts as the sole input for TTiP and has many customisable options.

These options can be seen below. After an example config which describes the options, some information is given on
how to input complex functions which may be required for your problem.

To create a local copy of this to edit, the gen_conf option can be used:

ttip --gen_conf

Each section is defined properly in the example config:

[PHYSICS]
The physics section is used to enable/disable physical limits.

limit_conductivity (bool): Enable the lower limit on conductivity?
limit_flux (bool): Enable flux limiting?

limit_conductivity: on

limit_flux: on

[SOLVER]
The solver section defines which solver to use and where to store the
results.

file path (string): The path to store the result in.

method (string): The method to use for time dependant problems.

Avalilable options are: ForwardEuler, BackwardEuler, CrankNicolson, and Theta.
theta (float): *+Theta method only#*#* The theta parameter for a theta model solve.
file_path: ttip_results/result.pvd

method: CrankNicolson

[MESH]

The mesh is defined by a type and parameters.

Mesh types include all UtilityMeshes in firedrake as well as the option to
read from a file.

#

(continues on next page)

TTiP Documentation, Release 0.0.0

(continued from previous page)

To create a mesh from file, stored at <filename>, use:
type: Mesh
params: <filename>

For information on Utility meshes, see the firedrake docs:
https://firedrakeproject.org/firedrake.html#module-firedrake.utility_meshes

S o HH R R

type (string): Which Mesh builder to use.

params (comma seperated list): The params for the given mesh builder.

element (string): The type of element to use in the mesh. CG should be fine for,
—most cases.

order (int): The order of the element to use in the mesh.

This is the complexity of each element, in most cases 1 will suffice.
Increasing this can slow down runtimes.
type: Box

params: 20, 20, 20, 4e-5, 4e-5, 4e-5

element: CG
order: 1

[PARAMETERS]

Any parameters are defined by name.

For example the below defines the density parameter.

A parameter will only be used if one of the mixins requests 1it.

Parameters follow the same pattern as other functions which can be read about
below.

Defining the ionisation parameter will use the constant iononisation formulation,
whereas 1f it 1s not defined, TTiP will use the non-constant ionisation formula.

No defaults are provided. Options are given below:
atomic_number

coulomb_1n

electron_density

ion_density

ionisation

S o o H R W H R W R HR R R HR H

[SOURCES]
Any sources that are defined here will be summed to produce a final source
term.

Sources follow the same pattern as other functions which can be read about
below.

#

The default is no source term.

default_source: 0

[BOUNDARIES]

Boundary conditions can be defined for each boundary surface in the mesh.

Problems can have no boundary conditions by leaving this section empty,

otherwise each surface must have 1 boundary condition, to define a condition
on all surfaces use 'all'.

<name>.boundary_type (string): The type of boundary condition
(dirichlet, neuman, robin)
<name>.surface (comma separated list or 'all'): The surface the condition
applies for.

HH H W H

(continues on next page)

8 Chapter 3. Configuration File

TTiP Documentation, Release 0.0.0

(continued from previous page)

If using dirichlet, you should also define:

- g (the value on the boundary). This should be either a scalar value,
or a function defined as described at the bottom of this document.
e.g. bound.g.type: Constant

If using neuman (not available yet!), you should also define:

- g (the derivative on the boundary). This should be a scalar or

function.

If using robin (not available yet!), you should also define:

- alpha

- g

#fixed.boundary_ type: dirichlet

#fixed.g: 100

#fixed.surface: 1, 2, 3, 4, 5, 6

[TIME]

Time is used to define any time dependency in the problem.

If this section is left blank, the problem is assumed to be steady state.
Only 2 (any 2) of the settings in this section are needed, and the third can
be calculated.

steps (int): The number of steps to take.

dt (float): The length of each time step.

max_t (float): The maximum time to step until.

#steps: 10

#dt: le-12

#max_t: le-13

[INITIALVALUE]

Initial values follow the same pattern as sources.

#

Defaults to 0 across the mesh.

default_initial_ value: 0

Functions:

To define a function in TTiP, we use the following format

<name>.type: <type>

<name>.<paraml>: <valuel>

#

#

For details on available functions and their parameters, please see the main
documentation for TTiP.

TTiP Documentation, Release 0.0.0

10 Chapter 3. Configuration File

CHAPTER 4

Functions

TTiP allows the creation of functions in the config file using either one of the built in function builders, or by writing
expressions.

The simplest functions can be defined as:

’ <name>: <expression>

e.g.

’radial: 1/sqgrt (x°2 + y*2)

Functions can also be interim functions. An interim function is one that is used as a component in other functions but
is not used directly by the section. To define an interim function, start the function name with an *_’:

_<name>: <expression>

Interim functions can then be used by name:

_foo: 10 + xxy
bar: foo"2

TTiP also offers predefined function builders which offer some useful functionality. Function builders are used to

create specific functions in the TTiP configuration file and are defined by setting the various properties with respect to
a name, using the form:

<name>.<property>: <value>

Each function builder must define the type property, along with the relevent properties for the selected type. e.g.:

foo.type: gaussian
foo.mean: 0.5
foo.sd: 0.1
foo.scale: 10

Available function builders are:

11

TTiP Documentation, Release 0.0.0

e Condition
e Constant
e [ile

e Gaussian

4.1 Condition

The condition function allows the user to create a stepped function using an operator alongside a left and right hand

side (lhs and rhs respectively).
Args:
* operator (str): The operator to use.
¢ lhs (str): An expression for the left hand side.
e rhs (str): An expression for the right hand side.
The exact formula is:

L

Condition(z, operator, lhs, ths) = {0

Where:
* operator is an operator (‘<’, ©>’, ‘<=", ‘==",...)
* lhs is an expression for the left hand side

* rhs is an expression for the right hand side
e.g.

L,

Condition(Z, <,z + y*,10) = {O

4.2 Constant

lhs operator rhs
otherwise

x4+ 23 < 10
otherwise

The Constant function creates a uniform function of value across the whole domain.

Args:
¢ value (numerical): The constant value.

The exact formula is:

constant(x, value) = value

Where:

¢ value is a scalar

12

Chapter 4. Functions

TTiP Documentation, Release 0.0.0

4.3 File

The File function creates an function interpolated from data in a file.
Args:
* path (str): The path to the file to interpolate.

The file must be a csv (optionally with a commented header row), where the first n columns represent the coords and
the final column is the value at the coordinate.

e.g. For a 2D problem:

x, vy, val

0.0, 0.0, 10.0
0.1, 0.0, 9.0
0.2, 0.0, 8.0
0.3, 0.0, 7.0

Cubic interpolation is used for 1-D or 2-D problems, while linear interpolation is used for higher dimensional prob-
lems.

4.4 Gaussian

The Gaussian function creates a symmetric function with a peak equal to the scale at the location defined by mean. As
the distance from this peak increases, the function decays exponentially. This decay is controlled by sd.

Args:
¢ mean (numerical): The mean for the function.
¢ sd (numerical): The standard deviation of the function.
e scale (numerical): The amount to scale the function by.

The exact formula is:

. 7l(17mcmn).(17mcmn)
gaussian(x, mean, sd, scale) = scale x e~ 2\~ sd
Where:
* mean is a vector (comma seperated list) of length dim(x), or a scalar value that will be broadcast to a vector.

* sd is a vector (comma seperated list) of length dim(x), or a scalar value that will be broadcast to a vector.

¢ scale is a scalar value

4.3. File 13

TTiP Documentation, Release 0.0.0

14 Chapter 4. Functions

CHAPTER B

Outputs

Once a run completes, the results are saved to a set of files as defined in the config file. For the examples, this is in a
results directory.

There are two file types which are generated by TTiP, VTK data files, and a paraview file to link them.

The VTK files will be numbered chronologically, one for each timestep, with the Oth file being the initial condition
and the nth file being the result after n timesteps. These should be compatible with a variety of visualisation software.

The Paraview file is used by Paraview to assemble the VTK files into a single object. Loading this file into Paraview
is the easiest way to visualise the data, help on using paraview can be found in the Paraview Guide.

15

TTiP Documentation, Release 0.0.0

16 Chapter 5. Outputs

CHAPTER O

Paraview Guide

Paraview is the easiest way to visualise the results from TTiP but can be confusing for new users. This section is
dedicated to providing a getting started guide for Paraview as well as some useful tips.

6.1 Getting Started

The first thing to do is download paraview from their website: https://www.paraview.org/

Once Paraview is installed, open it up and you will be presented with a lot of buttons, the most important are high-
lighted below.

Fle Edit View Sources Filters Tools Catabyst Macros Help

] Qa‘ Colourscale X adiiddiic P Beea
EOEERE Time controls

REWRE

LR | Moot 18 | + Color Map Editor L]
1 i CEHO e LA Rendervicws [0 B0 @] [seorch .. se s t dear toxy o0 ®
« EEEEm

| oy tame: T

9 AutomaticRescde = ~]-
Data view At £ | Grow and update on Ay

InterpretVakies A Categories

Rescsle On Vibilty Chinge

Data pipeline =

=

-

.

Properties | Information 2
Properties e® - F4
3 *0see 2 . S I

= fooe Esc agaiext @ Data:
IR Use g scle when mepping cta to colors

Enable opacity mapping for surfaces.

Data Histogram

~ Display data histogram
== Display (UnstructuredGridRepre || ! Clla e b
Representaton |5 pace - 5
= CE Number of ins: <+
Coloring ol
ST e Coorspace | puergng =
et |z s s 0 R Oan Color
Scalar Coloring Nan 0pacty e |
V] Mep Scalars
Color Discretization E
V| Interpolate Scalars Before Mapping
Selection Display Inspector ®
Styling
cpacty 1A Fcatiabes -
Pont Sie f © PontLabels
Line Width @ selection Color
e - 8 —10e+00 I ————
Setview direction to +X *

17

https://www.paraview.org/

TTiP Documentation, Release 0.0.0

6.1.1 Data Pipeline

The data pipeline will show all of the available data for visualising, here datasets can be toggled on or off to switch
which data is shown in the Data View section.

If filters are applied to the data (for example taking slices) these will show here too.

6.1.2 Update Visualisation

This button, and those around it are used to control the dataset currently selected in the data pipeline. When a new
dataset is loaded in, the first thing to do is hit apply.

6.1.3 Data View

The data view will show everything that is set to be shown in the data pipeline. This space is controlled by the mouse,
and by default on windows these controls are:

* Left click + drag: Translate
* Right click + drag: Zoom
* Mouse wheel scroll: Zoom

* Middle click + drag: Rotate

6.1.4 Time Controls

The time controls set which time is shown in the data view for all datasets.

6.1.5 Colourscale

The 2 buttons highlighted as colourscale allow you to set the colour to a custom range or to the full visible range.

6.2 More Advanced

6.2.1 Resetting the View

The mouse controls can be awkward and hard to get correct. To reset this to one of the axes, there are several buttons
at the top of the screen.

E}f o s 1) m“ ”x F'[w _qu +zjq F'[-z s
By Aw -5y a0 -80

6.2.2 Managing the Colour
The right hand menu will give finer control over the colour settings. Of particular note are the “Automatic Rescale
Range Mode” and a tick box to change to a logarithmic scale.

Two useful options for the autoscaling are “Never” and “Clamp and update” “Never” will lead to a consistent scale
accross all timesteps, while “Clamp and Update” will ensure maximum range without saturating for every time step.

18 Chapter 6. Paraview Guide

TTiP Documentation, Release 0.0.0

Color Map Editor [
i |Search .. {use Esc to dear text) ”E”E”E|

Automatic Rescale

Range Mode | Grow and update on 'Apply'

berpret Values As Categories

Rescale On Visibility Change
Mapping Data

Log Scale

Data Histogram

[- PERVRR PN NN SIS N -

6.2.3 Plotting a line

To plot a single line slice you can click the green “Plot over line” button, enter some coordinates for the ends of the
line, and click apply. This plot can then be further controlled from the Properties tab (where the coordinates were
entered) by changing the titles, colours and labels. Just be sure to apply any changes that are made.

6.2. More Advanced 19

TTiP Documentation, Release 0.0.0

) .)
o e E e Tt X o > = 3 - @ X
BEOOEBCOcass RuBEE ¢

Pipeline Browser B | Mot =1®

;
B oultn: -] ® _JEHE: ! IRCIRCR M Linechartviews | (]|]|F] ®
) base_case.pud
* 58+
504
254
04
Properties Inforr
354
Properties B®
% Delete

Search ... (use Esc to dear text) 30
== Properties (PlotOverLine1) == C IH e

Probe Type | High Resoiution Line Source Coordinates 25

Line

Leng

ow Line % 0.

Point1|0 5e-05 0

Pointz|0.0001 5e-05 0
bie: Use P’ to place alternating points on mesh or 'Ctr-+P tp

s the closest mesh point. Use "1'/'Ctrl+1 for poi 154

2 [Ctr T int 2.

X Axis ¥ Axs Z Axis
Center on Bounds
104
Resolution [y700
v Pass Partial Arrays
5]

v Compute Tolerance:
== Display (XYChartRepresentation [« 211 =]

Attribute Type . - . T T T q T T T

PontData = 165 265 366 465 686 0685 766 Beb 986 00001

6.2.4 Solid 3D objects
Visualing solid 3D objects will only show the boundary of the object, this is probably not desired as it may be set to
dirichlet (fixed) boundary conditions.

There are two easy ways to get around this: slicing and clipping. The clip tool lets you partially hide an object, while
the slice tool will show the values along a plane. These both work in a similar way to the line plotting above, but for
3D objects.

TPD

20 Chapter 6. Paraview Guide

CHAPTER /

TTiP - Contributor Documentation

Welcome to the contributor documentation for TTiP.
TTiP is built to be extendable in 2 main ways:

* Problem definition: The formula to be solved by the finite element code is highly extendable through the use of
Micxin classes.

* Functions: The available functions for defining parameters can be extended through the use of function_builder
classes.

These are both described more thoroughly in the linked pages above, as well as throughout the source code.

7.1 Code Structure

The source code for TTiP is structured into the following sections:
* cli: Entry points to the software.
* core: Main functionality.
* function_builders: Classes to create functions from config inputs.
e parsers: Code for parsing the config file.
» problem_mixins: Extensions for the problem class.
* resources: Any non code assets.
e util: Generic code that is used in various other places.

More detail on these can be found below.

7.1.1 CLI

The cli is designed be the main access point for TTiP from the terminal. Currently this only includes a single file
which serves as the main entry point for the software.

21

TTiP Documentation, Release 0.0.0

7.1.2 Core

The core folder contains code that is central to the logic of TTiP and ties the other section together. This includes the
solver, base problem, and the interface to the parsers.

7.1.3 Function Builders

The function builders folder follows a factory design pattern. This folder holds the factory and all of the function
builders. More information on this can be found in Function Builders.

7.1.4 Parsers
The parsers folder holds all code related to parsing the config file. This includes a file for each section of the config

file, as well as a base class and argument parser. More information can be found in Config Parsing and Expression
Parsing.

7.1.5 Problem Mixins

The problem mixins directory holds all optional extensions for the problem class. Information on these mixins is in
Problem Class.

7.1.6 Resources

The resources directory is a place to store assets that are not source code. Currently the only file in this directory is a
default config file which also serves to document the config options for a user.

7.1.7 Util

Finally, the util directory is a place for anything that doesn’t obviously fit in the other directories. This is likely to be
any utility methods or functionality. Currently this only holds some code to setup a logger.

7.2 Problem Class

The problem definitions in TTiP are designed to be extensible, this is done through multiple inheritance and mixin
classes.

The two main parts to a problem class in TTiP are the base class and the mixins.

7.2.1 Base Class

The base class (found in core/problem. py) defines a set of methods that create, set (replace), and bound firedrake
functions. It also defines a set of functions such as the flux and ionisation terms which are used in multiple mixins.

The formula that the problem defines is given by:
a—L=0

a is the sum of terms containing both 7" and v, whereas L does not contain 71" explicitly (some parameters can be
dependant on temperature).

22 Chapter 7. TTiP - Contributor Documentation

TTiP Documentation, Release 0.0.0

7.2.2 Mixins

The mixins are fundamental to creating a sensible problem.
A variety of mixins can be found in the problem_mixins directory.

Mixins are used to add functionality such as time dependancies, flux limits, specific conductivity formulations, and
many others.

The key concept of a mixin for the problem class is that it should edit the existing variables rather than replacing
them, either by adding terms or by using the set_ function method from the parent class (which will be available
at runtime as the mixin will only ever be used with the base problem class). Some examples of this are the time
dependancy mixin which adds a term to the a attribute, and the conductivity limiter which imposes bounds on the
existing conductivity.

7.2.3 Usage

Some examples of how to define new problem classes can be seen at the bottom of the core/problem.py file as
well as a utility function to dynamically create new problem classes.

7.2.4 Extending

To add new functionality to the problem class, define a new mixin (using the template in problem_mixins)
this can then be used in any custom scripts. To make the new mixin more accessible, it should be added to the
create_problem_class method in the problem file.

7.3 Config Parsing

Parsing the config file is done using a set of parsers, one for each config section in the parsers directory. These are
called from core/read_config.py.

To extend the config options to add more options to a config section, add the parsing to parse function in the
associated parser, and fetch it in the read_config.py section.

To add a new section, an additional parser should be created.

7.4 Function Parsing

Functions in TTiP can be divided into 2 categories, those built using expressions, and those built using predefined
constructs or function builders.

Both of these have been created in such a way that they can be extended, although Function Builders are considerably
easier to understand.

7.4.1 Expression Parsing

The expression parser can be found in parsers/parse_args.py.

This works by reading the expression from left to right and building a tree which is evaluated once complete. For
example:

7.3. Config Parsing 23

TTiP Documentation, Release 0.0.0

X + 2%y 1= +
/N
X
/N
2y

The expression parser is made up of Node subclasses: Expression, List, and Terminal.

Base Node

The base class contains code to return the parent node when created.

Due to the way this works, the tree is built up in both directions. As such, when creating a node from a string, the root
node should be returned. This is done by overriding __new___ and using a custom initialiser _init rather than the
usual __init__ (using the standard initialiser causes objects to be reinitialised after __new__).

The base node also controls named terminals for the expression parser. This allows custom terminals, where a name
is given to the parser from the calling code alongside a value, and reserved terminals, where the name is reserved for
use by one of the Node classes (e.g. ‘false’).

Finally, the base node also has the functionality to return a ready state describing if it can be evaluated yet. A node is
considered to be ready if all the required terminals in custom_terminals have been assigned a value.

Expression
The Expression class handles the bulk of the tree building, and within, this is done on initialisation (in the _init
method).

In brief, this class takes a string and determines the next operator, it then creates a new tree for each of the left and
right operands. If the operator has a lower or equal priority than the parents operator, a pivot is applied.

The pivot follows the following pattern:

opl op2
/ \ / \
X op2 -> opl z
/ \ / \
Yy z X y

Where X, y, and z can also be a tree.

The operands are defined by a dictionary at the class level which maps the string format to a tuple of priority, callable,
and string format.

Expressions can also contain unary functions defined in the functions dictionary. These are called by a name followed
by an open bracket (except in the case of negation).

New binary functions should be added by extending the operators dictionary and new unary functions should be added
by extendin the functions dictionary.

Evaluation of an expression is done by first evaluating a left and right hand side, then applying an operator to them.

List

The list node is used for any string with a comma in. It assumes that the string is a comma separated list and creates
an expression for each of these.

24 Chapter 7. TTiP - Contributor Documentation

TTiP Documentation, Release 0.0.0

Terminal

Terminal nodes evaluate the singleton values after operators have been removed. This includes boolean, integer, float,
string, and coordinate values.

Coordinate values are reserved keyword mappings that allow for expressions such as:

X2+ yh2

Where x and y are the mesh coordinates.

7.4.2 Function Builders

The function builders can be found in the function_builders directory alongside a base class and a factory implemen-
tation.

Base Class (function_builder.py)
The base class defines some shared interfaces for all of the function builders, and should be inheritted from for a new
function builder to work.

In general, the only requirement for the sub classes of this are that they override the abstract build method so that it
returns a firedrake Function, or a numerical value. In practice, since this is designed to only be accessed by the factory
(explained below), there are additional constraints:

* Function builders should not modify the signature of __init__ . E.g. they are initialised with (mesh, V)
and any other arguments must be defined using the assign method.

* The signature of build should not be edited. To access arguments for constructing a function, the object dictio-
nary _props should be used.

Since the build method signature cannot be changed, values must be passed through a different mechanism. This is
done using the _props dictionary and assign method.

Assign takes a name and a value as inputs, it then checks this pair is valid for the class by checking that the name is in
the properties dictionary and that the type of value matches the entry in properties. Ifitis valid, _props is
updated with the name-value pair.

Factory (function_builder_ factory.py)

The factory is used to dynamically import and use only the specified function builder at runtime. This means that
extending the set of function builders is done by creating a new file. The factory will then be able to find the new
builder by name and load the code.

In order for the factory to work, there can only be 1 function builder per file.

Function Builders (<type>_builder.py)

The rest of the files in this directory are function builders and should serve as good examples for adding new ones.
To create a new function builder, you should make sure to define the following on the new subclass:

* properties dict: This dictionary should have the names of all properties that are required to build a function,
alongside the type of each property. Types can be specified as a tuple e.g. if a value can be int or float.

* build method: This is the main logic in the builder.

7.4. Function Parsing 25

TTiP Documentation, Release 0.0.0

It is also important to name the file sensibly as this is how the function builder will be selected. For a file called
foo_builder.py, the user will be required to set the type in the config file to foo. If this is not appropriate in the
future, the factory will have to be changed.

7.5 Logging

TTiP uses pythons default logger via a wrapper stored in utils this sets up the logger and ensures the correctly set
up logger is used.

7.6 Testing

All tests for TTiP are done using pytest and are automated through github actions. Coverage is monitored using
codecov.

7.6.1 Tests

Currently, the only testing in TTiP is unit testing. Most functions in the code are supported by multiple tests to cover
every input permutation. Some functions are declaritive and are not tested as this would likely lead to code being
duplicated in the tests.

7.6.2 Linting

All source code is ran through both pylint and flake8 to enfore coding standards. This is done as a github action before
pull requests are merged.

7.6.3 Coverage

The coverage is calculated once the tests suite completes. When new code is added, coverage should be considered
and tests added.

7.7 Documentation

The documentation for TTiP is all stored in the docs directory and is written to be used with sphinx.

A local copy of the documentation can be generated using:

cd docs
make html

An online copy of the documentation can be found on readthedocs, and is automatically updated when commits are
added to github.

26 Chapter 7. TTiP - Contributor Documentation

TTiP Documentation, Release 0.0.0

7.8 Some key links for contributors:

¢ Source
* Tests
* Coverage

¢ Docs

7.8. Some key links for contributors:

27

https://github.com/AndrewLister-STFC/TTiP
https://github.com/AndrewLister-STFC/TTiP/actions
https://codecov.io/gh/AndrewLister-STFC/TTiP
https://ttip.readthedocs.io/en/latest/

TTiP Documentation, Release 0.0.0

28 Chapter 7. TTiP - Contributor Documentation

CHAPTER 8

Indices and tables

* genindex
* modindex

e search

29

TTiP Documentation, Release 0.0.0

30 Chapter 8. Indices and tables

Python Module Index

TTiP.

TTiP

TTiP

TTiP.

function_builders.

12

.function_builders

12

.function_builders.
function_builders.

13

condition_builder

.constant_builder

file_builder, 13
gaussian_builder,

31

TTiP Documentation, Release 0.0.0

32 Python Module Index

Index

TTiP.

TTiP.

TTiP.

TTiP.

function_builders.

(module), 12
function_builders

(module), 12
function_builders

(module), 13

function_builders.

(module), 13

condition_builder

.constant_builder

.file_builder

gaussian_builder

33

	Installation
	Installing Firedrake - Docker (recommended)
	Installing Firedrake - Manual
	Installing TTiP

	Using TTiP
	Troubleshooting

	Configuration File
	Functions
	Condition
	Constant
	File
	Gaussian

	Outputs
	Paraview Guide
	Getting Started
	More Advanced

	TTiP - Contributor Documentation
	Code Structure
	Problem Class
	Config Parsing
	Function Parsing
	Logging
	Testing
	Documentation
	Some key links for contributors:

	Indices and tables
	Python Module Index
	Index

